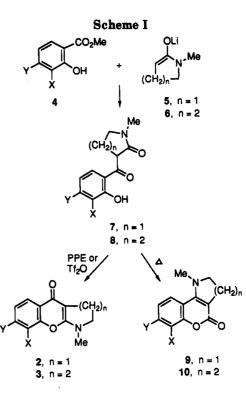

Synthesis of 2.3-Dihydro[1]benzopyrano[2,3-b]pyrrol-4(1H)-ones and 1,2,3,4-Tetrahydro-5H-[1]benzopyrano[2,3-b]pyridin-5-ones

Joel Morris,* Donn G. Wishka, and Randy M. Jensen

Medicinal Chemistry Research, The Upjohn Company, Kalamazoo, Michigan 49001


Received July 20, 1993

As part of an effort to prepare antiplatelet compounds related to 2-aminochromone 1 with improved pharmaceutical properties,¹⁻³ we required an efficient synthesis of the tricyclic derivatives 2 and 3. Although catalytic

hydrogenation of 5H-[1]benzoprano[2,3-b]pyridin-5-ones was an established route to the 1,2,3,4-tetrahydro-5H-[1]benzopyrano[2,3-b]pyridin-5-one skeleton,⁴ we were interested in a method with sufficient flexibility to provide both the 6,6,6 and 6,6,5 ring systems. Eiden has described the preparation of lactams 7a and 8a and the subsequent thermolysis of 7a to afford the cyclic aminocoumarin derivative 9a.⁵ Although considered as a potential product from this reaction, the corresponding cyclic aminochromone 2a was not observed.⁵ We have recently developed a new synthesis of 2-aminochromones from the cyclodehydration of a series of related salicylacetamides with triflic anhydride⁶ (Tf₂O) or polyphosphoric ester⁷ (PPE).⁸ In this paper we report the successful application of this methodology to the preparation of 2,3-dihydro[1]benzopyrano-[2,3-b]pyrrol-4(1H)-ones 2 and 1,2,3,4-tetrahydro-5H-[1]benzopyrano[2,3-b]pyridin-5-ones 3 via the cyclodehydration of lactams 7 and 8, respectively.

Lactams 7 and 8 were synthesized from a series of methyl salicylates 4 by a modification of the procedure of Eiden utilizing the corresponding lithium enolates of N-methyl-

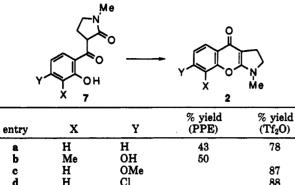
2-pyrrolidinone (5) and N-methyl-2-piperidone (6), respectively (Scheme I).⁵ Yields for the preparation of 8 ranged from 56 to 87% whereas those for 7 were lower (30-70%) due to the formation of a carbinol byproduct resulting from the addition of a second equivalent of 5 to the ketone of 7. Attempts to suppress the generation of this carbinol by inverse addition of the enolate or use of lower temperatures met with only moderate success.

Confirmation of the cyclization mode recorded by Eiden was obtained via the formation of aminocoumarin 9a in 87% yield upon heating of 7a at 205-215 °C for 2.5 h.5 However, in contrast to this earilier report, we were successful in promoting the thermolysis of the corresponding piperidinone 8a (215 °C, 4 h) to provide a 95%recovery of an 8:1 mixture of 10a and the cyclic aminochromone 3a. Similar results were obtained with the corresponding 4-hydroxy-3-methyl derivatives 7b and 8b. Thermolysis of each substrate (250 °C, 1 h) was followed by acetylation of the crude reaction mixture to provide exclusively the aminocoumarin 9h (X = Me, Y = OAc, from 7b) and ca. a 2:1 mixture of 10h and 3h (X = Me, Y = OAc, from 8b).

In contrast, the alternate mode of cyclization, providing almost exclusively the cyclic aminochromones 2 and 3, was observed when lactams 7 and 8, respectively, were subjected to dehydration conditions. As was found for our synthesis of 2-aminochromones, both PPE and Tf₂O were useful for this transformation (50-88% yields, Tables I and II). Although these reagents proved to be equally effective for the converison of 8 to 3, somewhat better yields of the cyclic aminochromones 2 were realized through the use of Tf_2O (PPE, 43%, vs. Tf_2O , 78%, for 2a).⁸ As testimony to the selectivity of this process, the corresponding cyclic aminocoumarin was seen as a side product in only one example ($8a \rightarrow 3a$). The unambiguous structural assignments of the coumarin and chromone cyclization products were provided by comparison of the 2D long-range heteronuclear correlation (COLOC) NMR spectrum of (9h and 10h, X = Me, Y = OAc) and (2h and b)

⁽¹⁾ Morris, J; Wishka, D. G.; Lin, A. H.; Humphrey, W. R.; Wiltse, A. L.; Gammill, R. B.; Judge, T. M.; Bisaha, S. N.; Olds, N. L.; Jacob, C. S.; Bergh, C. L.; Cudahy, M. M.; Williams, D. J.; Nishizawa, E. E.; Thomas, E. W.; Gorman, R. R.; Benjamin, C. W.; Shebuski, R. J. J. Med. Chem. 1993, 36, 2026.

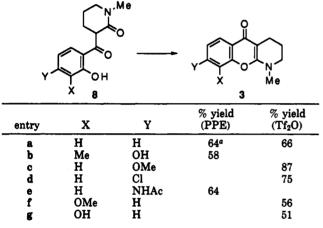
^{(2) (}a) Mazzei, M.; Balbi, A.; Roma, G.; Di Braccio, M.; Leoncini, G.; Buzzi, E.; Maresca, M. Eur. J. Med Chem. 1988, 23, 237. (b) Mazzei, M.; Sottofattori, E; Di Braccio, M.; Balbi, A.; Leoncini, G.; Buzzi, E.; Maresca, M. Eur. J. Med. Chem. 1990, 25, 617. (c) Leoncini, G.; Maresca, M.; Colao, C.; Buzzi, E.; Mazzei, M. Cell Biochem. Function 1991, 9, 79. (d) Leoncini, G.; Maresca, M.; Colao, C.; Buzzi, E.; Mazzei, M.; Balbi, A. Pharm. Res. 1991, 23, 139-148.


Morris, J.; Wishka, D. G.; Fang, Y. J. Org. Chem. 1992, 57, 6502.
 (4) Nantka-Namirski, P.; Piechaczek, J.; Wrotek, J. Acta Pol. Pharm. 1976, 33, 669; Chem. Abstr. 1977, 87(19), 152054e. (b) Pasutto, F. M.; Abuzar, S.; Alberta, E. Heterocycles 1985, 23, 2293.

<sup>Abuzar, S.; Alberta, E. Heterocycles 1985, 23, 2293.
(5) Eiden, F.; Baumann, E.; Lotter, H. Liebigs Ann. Chem. 1985, 165.
(6) (a) Hendrickson, J. B.; Bair, K. W.; Keehn, P. M. Tetrahedron</sup> Lett. 1976, 603. (b) Hendrickson, J. B.; Hussoin, M. S. J. Org. Chem. 1987, 4137. (c) Hendrickson, J. B.; Hussoin, M. S. J. Org. Chem. 1989, 1144. (d) Gramstad, T.; Husebye, S.; Sæbő Acta Chem. Scand. B 1985, 39, 505. (e) Baldwin, J. E.; O'Neil, I. A. Synlett 1990, 603.
(7) (a) Kanaoka, Y.; Kuga, T.; Tanizawa, K. Chem. Pharm. Bull. Jpn.
1970, 18, 397. (b) Kanoaka, Y.; Machida, M.; Yonemitsu, O.; Ban, Y. Chem. Pharm. Bull. Jpn. 1985, 13 1065.

Chem. Pharm. Bull. Jpn. 1965, 13, 1065.

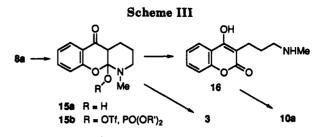
⁽⁸⁾ Morris, J.; Wishka, D. G.; Fang, Y. Synth. Commun., in press.



		~ -		••
e	н	NHAc	50	
f	OMe	н		80
g	OH	н		61

 Table II. Synthesis of

 1,2,3,4-Tetrahydro-5H-[1]benzopyrano[2,3-b]pyridin-5-ones



^a An 8.5% yield of 10a was also isolated from this reaction.

Scheme II 1. LDA 2. 4a 0H 11 12 PPE R 13 R = PMB14 R = H

3h, X = Me, Y = OAc),⁹ respectively. The chromones were readily distinguished from the coumarins on the basis of a three bond $({}^{3}J_{C-H})$ coupling detected between the C-4 carbonyl and the C-5 proton in **2h** and between the C-5 carbonyl and the C-6 proton in **3h**.

This methodology was expanded to the synthesis of 1,2,3,4-tetrahydro-5H-[1]benzopyrano[2,3-b]pyridin-5-ones with substituents other than methyl on the vinylogous amide nitrogen (Scheme II). The strategy called for protection of the 2-piperidone nitrogen with the acid labile

4-methoxybenzyl (PMB) group. The lithium enolate of 11^{10} was condensed with methyl salicylate (4a) to afford β -ketoamide 12 in 69% yield. Cyclodehydration of 12 with PPE gave 13 (54%) which upon treatment with trifluoroacetic acid/H₂SO₄ (1:1) afforded an 88% yield of the tricyclic aminochromone 14.

Attempted hydrolysis of aminochromone 3a with 5% HCl/CH₃CN (rt, 24 h) left it unchanged in contrast to its acyclic 2-amino-3-methyl counterpart which was readily converted to the corresponding 4-hydroxy-3-methylcoumarin under similar conditions.³ In addition, the failure of 3a to react under thermal conditions (215 °C, 4 h) disgualifies it as a potential intermediate during the conversion of 8a to 10a. The dichotamous modes of cyclization observed under thermal and dehydration conditions can be rationalized as follows (Scheme III). During thermolysis, the phenolic proton acts as an internal acid catalyst to provide the tetrahedral intermediate 15a which favors elimination of the amine and cyclization at the C-4 position of the corresponding hydroxycoumarin derivative 16.11 Under dehydration conditions, the related tetrahedral intermediate 15b possesses a phosphate or triflate leaving group favoring direct elimination to give the tricyclic 2-aminochromone.

In summary, we have developed an efficient method for the synthesis of the 5- and 6-membered cyclic aminochromone derivatives 2 and 3 in two steps starting from salicylic esters. The key cyclodehydration step providing the chromone product contrasts with a related thermal cyclization to the corresponding aminocoumarin.

Experimental Section

IR spectra were taken as a Nujol mull. UV spectra were obtained in EtOH. ¹H and ¹⁸C NMR spectra were obtained in CDCl₈ (unless otherwise indicated) at 300 MHz. Melting points are uncorrected. Thin layer chromatography was performed on Merck precoated glass TLC plates with silica gel 60-F254 and stained with a solution of 75 g of ammonium molybdate, 2.5 g of cerric sulfate, and 500 mL of 10% H₂SO₄ (v/v). Column (flash) chromatography was performed with Merck silica gel 60 (230-400 mesh).

3-(2-Hydroxybenzoyl)-1-methyl-2-pyrrolidinone (7a). A solution of 1-methyl-2-pyrrolidinone (12.7 mL, 132 mmol) in 100 mL of dry THF under N₂ at -20 °C was treated slowly dropwise with a solution of LDA (66 mL, 132 mmol, 2 M in heptane/THF/ethylbenzene). The mixture was stirred for 30 min at -20 °C, treated slowly dropwise with methyl salicylate (5.2 mL, 40 mmol, internal temperature <-10 °C), and stirred overnight as the cooling bath expired. The mixture was cooled to 0 °C, was quenched with 25 mL of H₂O, and the pH was adjusted to 6.8 with 10% HCl. The aqueous layer was washed with 2 × 50 mL of CH₂Cl₂, and the combined organics were dried over MgSO₄ and concentrated *in vacuo*. The oil was chromatographed over 200 g of silica gel (3% MeOH/CH₂Cl₂ to provide 5.6 g (63%) of 7a (after filtration through a silica gel plug, EtOAc) along with 2.56 g (20%) of the bis addition product. 7a: ¹H NMR δ 2.28

⁽⁹⁾ Compounds 2h and 3h were prepared via the acetylation of 2b and 3b, respectively (see experimental procedures in supplementary material).

⁽¹⁰⁾ N-(4-Methoxybenzyl)-5-valerolactam (11) was prepared in 94% yield from the reaction of 2-piperidone with 4-methoxybenzyl chloride (NaH, reflux, THF, 23 h).

⁽¹¹⁾ Tabakovic, K.; Tabakovic, I; Ajdini, N.; Leci, O. Synthesis 1987, 308.

(m, 2), 2.62 (m, 2), 2.91 (s, 3), 3.40 (m, 2), 3.49 (m, 2), 4.49 (dd, J = 5, 9 Hz, 1), 6.96 (m, 2), 7.50 (m, 1), 8.00 (m, 1), 12.05 (bs, 1); ¹³C NMR δ 18.0, 21.9, 48.1, 50.0, 118.2, 119.2, 119.3, 132.1, 136.9, 162.9, 169.7, 201.8; IR 1692, 1635, 1488, 1447, 1273 cm⁻¹. Anal. Calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.42; H, 6.13; N, 6.28. Bis adduct: mp 160–162 °C; ¹H NMR δ 1.91–3.36 (m, 4), 2.75 (s, 3), 2.85 (s, 3), 2.80-3.34 (m, 4), 3.70 (m, 1), 4.05 (m, 1), 6.72–6.92 (m, 3), 7.10 (m, 1); IR 1692, 1662, 1458, 1295, cm⁻¹. Anal. Calcd for C₁₇H₂₂N₂O₄ (0.86% H₂O found): C, 63.58, H, 7.00, N, 8.72. Found: C, 63.30, H, 6.98, N, 8.72.

3-(2,4-Dihydroxy-3-methylbenzoyl)-1-methyl-2-pyrrolidinone (7b) was prepared according to the procedure for 7a except that the reaction was warmed at reflux overnight: yield 2.1 g (30%); mp 236-237.5 °C; ¹H NMR (DMSO- d_6) δ 1.87 (s, 3), 2.05-2.29 (m, 2), 2.65 (s, 3), 3.27 (m, 2), 4.48 (m, 1), 6.38 (m, 1), 7.67 (m, 1), 12.82 (s, 1); ¹³C NMR (DMSO- d_6) δ 7.8, 22.2, 29.7, 47.4, 48.9, 107.6, 110.3, 112.4, 131.7, 163.1, 163.3, 170.2, 201.6; IR 1680, 1619, 1459, 1244 cm⁻¹. Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.58; H, 6.02; N, 5.69.

3-(2-Hydroxybenzoyl)-1-methyl-2-piperidone (8a). A solution of 1-methyl-2-piperidone (9.4 mL, 82.5 mmol) in 50 mL of dry THF under N₂ at 0 °C was treated with a solution of LDA (41.3 mL, 82.5 mmol) and stirred for 30 min. The mixture was treated at 0 °C with methyl salicylate (3.24 mL, 25 mmol) and was stirred for 1 h at rt. Workup as for 7a followed by chromatography over 150 g of silica gel (2.5% MeOH/CH₂Cl₂) afforded 5.06 g (87%) of 8a: mp 190–192 °C (lit.⁵ mp 198 °C); ¹H NMR δ 1.78–1.91 (m, 1), 2.00–2.37 (m, 3), 3.03 (s, 3), 3.27–3.49 (m, 2), 4.46 (m, 1), 6.85–6.99 (m, 2), 7.48 (m, 1), 7.78 (m, 1), 12.15 (bs, 1); ¹³C NMR δ 21.4, 25.8, 49.6, 49.7, 118.6, 119.1, 131.0, 136.7, 163.0, 166.4, 211.6; IR 1630, 1447, 1207 cm⁻¹. Anal. Calcd for C₁₃H₁₆NO₃ (0.89% H₂O found): C, 66.32; H, 6.52; N, 5.95. Found: C, 66.08; H, 6.68; N, 6.15.

3-(2,4-Dihydroxy-3-methylbenzoyl)-1-methyl-2-piperidone (8b) was prepared according to the procedure of **8a** except that purification was by crystallization from Et₂O/EtOAc: yield 6.04 g (80%); mp 208-210 °C; ¹H NMR (DMSO- d_6) δ 1.75 (m, 4), 1.89 (s, 3), 2.75 (s, 3), 3.24 (m, 2), 4.39 (m, 1), 6.40 (m, 1), 7.62 (m, 1), 10.59 (s, 1), 12.90 (s, 1); ¹³C NMR (DMSO- d_6) δ 7.6, 20.7, 26.1, 34.3, 48.5, 49.2, 107.4, 110.4, 112.0 130.8, 163.0, 163.1, 166.3, 203.7; IR 1619, 1498, 1455, 1236 cm⁻¹. Anal. Calcd for C₁₄H₁₇-NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.61; H, 6.52; N, 5.33.

2,3-Dihydro-1-methyl[1]benzopyrano[4,3-b]pyrrol-4(1H)one (9a). 7a (440 mg, 2.0 mmol) was heated at 205–215 °C for 2.5 h under N₂. The mixture was chromatographed over 20 g of silica gel (3% MeOH/CH₂Cl₂) to afford 350 mg (87%) of 9a; mp 163 °C (lit.⁵ mp 168 °C); ¹H NMR δ 2.95 (t, J = 9.8 Hz, 2), 3.37 (s, 3), 3.77 (t, J = 9.8 Hz, 2), 7.20 (m, 1), 7.32 (m, 1), 7.49 (m, 1), 7.89 (m, 1); ¹³C NMR δ 24.5, 37.3, 57.0, 98.8, 113.3, 118.1, 123.1, 123.1, 131.4, 155.4, 157.6, 160.4; UV 251, 300, 310, 340, 347, 365 nm; IR 1682, 1541 cm⁻¹. Anal. Calcd for C₁₂H₁₁NO₂: C, 71.63; H, 5.51; N, 6.96. Found: C, 71.68; H, 5.60; N, 6.98.

1-Methyl-1,2,3,4-tetrahydro-5*H*-[1]benzopyrano[4,3-*b*]pyridin-5-one (10a). 8a (466 mg, 2.0 mmol) was heated at 215 °C for 4 h under N₂. ¹H NMR of the crude reaction showed an 8:1 mixture of 10a/3a. The material was chromatographed over 25 g of silica gel (3% MeOH/CH₂Cl₂) to afford 146 mg (34%) of 10a: mp 95-96.5 °C (EtOAc); ¹H NMR δ 1.91 (m, 2), 2.60 (t, J = 6.4 Hz, 2), 3.18 (s, 3), 3.24 (t, J = 5.5 Hz, 2), 7.24 (m, 1), 7.29 (m, 1), 7.43 (m, 1), 7.69 (m, 1); ¹³C NMR δ 19.0, 22.3, 43.4, 51.8, 104.4, 116.6, 117.5, 122.8, 124.9, 130.2, 153.0, 154.5, 162.5; UV 251, 297, 310, 327 nm; IR 1675, 1598 cm⁻¹. Anal. Calcd for C₁₃H₁₃NO₂: C, 72.54; H, 6.09; N, 6.51. Found: C, 72.61; H, 6.20; N, 6.54.

7-(Acetyloxy)-2,3-dihydro-1,6-dimethyl[1]benzopyrano-[4,3-b]pyrrol-4(1*H*)-one (9h). 7b (235 mg, 0.94 mmol) was heated at 240 °C for 40 min under vacuum. The residue (190 mg) was suspended in 6 mL of CH₂Cl₂ and treated with Et₃N (395 μ L, 2.83 mmol) and acetyl chloride (200 μ L, 2.83 mmol). The reaction was heated at reflux for 2 h, diluted with CH₂Cl₂, and washed with 10 mL of saturated NaHCO₃. The aqueous layer was extracted with 10 mL of CH₂Cl₂, and the combined organics were dried over MgSO₄ and concentrated *in vacuo*. The material was chromatographed over 15 g of silica gel (3% MeOH/ CH₂Cl₂) to afford 90 mg (33%) of 9h: mp 176–178 °C (EtOAc); ¹H NMR δ 2.28 (s, 3), 2.37 (s, 3), 2.95 (t, J = 9.7 Hz, 2), 3.33 (s, 3), 3.78 (t, J = 9.7 Hz, 2), 6.93 (m, 1), 7.75 (m, 1); ¹³C NMR δ 9.8, 20.8, 24.4, 37.3, 57.1, 98.2, 111.1, 117.1, 120.2, 120.9, 151.2, 154.7, 157.7, 160.3, 168.8; IR 1763, 1692, 1199 cm⁻¹. Anal. Calcd for $C_{15}H_{15}NO_4$ (0.5% H₂O found): C, 65.59; H, 5.56; N, 5.10. Found: C, 65.25; H, 5.45; N, 4.89.

8-(Acetyloxy)-1,7-dimethyl-1,2,3,4-tetrahydro-5*H*-[1]benzopyrano[4,3-b]pyridin-5-one (10h) was prepared according to the procedure for 9h. Yield of 10h, 89 mg (33%); 3h, 52 mg (19%). 10h: mp 149–150 °C (EtOAc); ¹H NMR δ 1.88 (m, 2), 2.29 (s, 3), 2.40 (s, 3), 2.59 (t, J = 6 Hz, 2), 3.14 (s, 3), 3.22 (t, J = 5.4 Hz, 2), 6.93 (m, 1), 7.53 (m, 1); ¹³C NMR δ 9.4, 18.9, 20.8, 22.2, 43.5, 51.8, 104.0, 114.4, 116.7, 119.4, 122.6, 150.2, 152.1, 154.7, 162.4, 168.9, 172.5; IR 1758, 1685, 1605 cm⁻¹. Anal. Calcd for C₁₆H₁₇NO₄: C, 66.89; H, 5.96; N, 4.87. Found: C, 66.90; H, 5.80; N, 4.85.

2,3-Dihydro-1-methyl[1]benzopyrano[2,3-b]pyrrol-4(1H)one (2a). Method A. A solution of 7a (1.7 g, 7.75 mmol) in 24 mL of PPE/CHCl₃ (124 g/250 mL) under N₂ was heated to reflux for 3.5 h. The volatiles were removed in vacuo, and the residue was added to 125 mL of 2 N NaOH at 0 °C. The mixture was extracted with 4×50 mL of CH₂Cl₂, and the organics were dried over MgSO₄ and concentrated in vacuo. The solid was chromatographed over 50 g of silica gel (3% MeOH/CH₂Cl₂) to afford 664 mg (43%) of 2a. Method B. A solution of 7a (1.85 g, 8.4 mmol) in 20 mL of CH₂Cl₂ under N₂ was treated with Tf₂O (3.1 mL, 18.6 mmol) (CAUTION: exotherm) and stirred for 23 h at rt. The mixture was concentrated in vacuo and diluted with 20 mL of MeOH and stirred for 1.5 h at rt. The volatiles were removed, and the solid was partitioned between 1×15 mL of 1 N KOH and 3×25 mL of CH₂Cl₂. The combined organics were dried over MgSO4 and concentrated in vacuo to provide 1.32 g (78%) of 2a: mp 167-168 °C; ¹H NMR (DMSO-d₆) δ 2.72 (t, J = 8.5 Hz, 2), 3.13 (s, 3), 3.49 (t, J = 8.5 Hz, 2), 7.32 (m, 1), 7.37 (m, 1), 7.49 (m, 1), 7.88 (m, 1); ¹³C NMR (DMSO-d₆) δ 22.1, 31.4, 50.2, 94.5, 116.8, 124.4, 124.6, 125.1, 131.1, 153.3, 165.4, 169.1; UV 257, 281, 292, 323 nm; IR 1641, 1615 cm⁻¹. Anal. Calcd for C₁₂H₁₁NO₂: C, 71.63; H, 5.51; N, 6.96. Found: C, 71.82; H, 5.57; N, 7.09.

2,3-Dihydro-1,8-dimethyl-7-hydroxy[1]benzopyrano[2,3b]pyrrol-4(1*H*)-one (2b). A solution of 7b (1.7 g, 6.82 mmol) in 24 mL of PPE/CHCl₃ (124 g/250 mL) under N₂ was heated to reflux for 5 h. The volatiles were removed *in vacuo*, and the residue was added to 60 mL of 2 N NaOH at 0 °C. The mixture was treated with 10% HCl (to pH 7), and the precipitate was collected, washed with H₂O and Et₂O, and dried. The solid was recrystallized from MeOH/CH₂Cl₂ to give 789 mg (50%) of 2b: mp >300 °C; ¹H NMR (DMSO-d₆) δ 2.27 (s, 3), 2.83 (t, J = 9 Hz, 2), 3.02 (s, 3), 3.62 (t, J = 9 Hz, 2), 6.90 (m, 1), 7.68 (m, 1); IR 1628, 1589. Anal. Calcd for C₁₃H₁₃NO₈: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.45; H, 5.77; N, 6.03.

2,3-Dihydro-7-methoxy-1-methyl[1]ben zopyrano[2,3-b]pyrrol-4(1*H***)-one (2c) was prepared according to the procedures for 2a**: yield (method A) 812 mg (44%), (method B) 1.61 g (87%); mp 204.5-206.5 °C (EtOAc); ¹H NMR (MeOH-d₄) δ 2.82 (t, J = 9 Hz, 2), 2.92 (s, 3), 3.58 (t, J = 9 Hz, 2), 3.78 (s, 3), 6.86 (m, 2), 7.83 (m, 1); ¹³C NMR (MeOH-d₄) δ 22.7, 31.5, 51.7, 56.4, 96.1, 101.8, 114.0, 117.9, 126.6, 156.3, 163.9, 168.0, 172.1; UV 252, 282, 290, 324 nm; IR 1612, 1554 cm⁻¹. Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.39; H, 5.63; N, 6.06.

7-Chloro-2,3-dihydro-1-methyl[1]benzopyrano[2,3-b]pyrrol-4(1*H*)-one (2d) was prepared according to the procedure for 2a: yield (method B) 1.64 g (88%); mp 173–174 °C (EtOAc); ¹H NMR δ 3.02 (s, 3), 3.04 (t, J = 9 Hz, 2), 3.64 (t, J = 9 Hz, 2), 7.30 (m, 2), 8.11 (m, 1); ¹³C NMR δ 22.3, 31.7, 51.0, 95.7, 116.6, 123.1, 125.6, 126.6, 136.4, 153.6, 165.7, 169.7; UV 253, 259, 284, 295, 331 nm; IR 1632, 1599 cm⁻¹. Anal. Calcd for C₁₂H₁₀ClNO₂: C, 61.16; H, 4.28; N, 5.94. Found: C, 60.92; H, 4.30; N, 5.86.

N-(2,3-Dihydro-1-methyl-4(1*H***)-oxo[1]benzopyrano[2,3-***b***]pyrrol-7-yl)acetamide (2e) was prepared according to the procedure for 2a: yield (method A) 930 mg (50%); mp >300 °C (MeOH/CH₂Cl₂/EtOAc (1:2:3)); ¹H NMR (MeOH-***d***₄) \delta 2.07 (s, 3), 2.86 (t,** *J* **= 9 Hz, 2), 2.94 (s, 3), 3.60 (t,** *J* **= 9 Hz, 2), 7.22 (m, 2), 7.81 (m, 1), 7.89 (m, 1); UV 264, 284, 297, 333 nm; IR 1699, 1621 cm⁻¹; HRMS calcd for C₁₄H₁₄N₂O₃ 258.1004, found 258.1006.**

2,3-Dihydro-8-methoxy-1-methyl[1]benzopyrano[2,3-b]pyrrol-4(1*H*)-one (2f) was prepared according to the procedure for 2a: yield (method B) 1.76 g (80%); mp 180–181 °C (EtOAc); ¹H NMR δ 3.03 (s, 3), 3.01 (t, J = 9 Hz, 2), 3.64 (t, J = 9 Hz, 2), 3.94 (s, 3), 7.05 (m, 1), 7.25 (m, 1), 7.72 (m, 1); ^{13}C NMR δ 21.9, 31.4, 50.5, 55.8, 95.2, 112.5, 116.1, 124.1, 125.2, 143.1, 147.3, 165.3, 170.3; UV 252, 263, 305, 321 nm; IR 1627, 1614 cm^{-1}. Anal. Calcd for C1₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.41; H, 5.79; N, 5.99.

2,3-Dihydro-8-hydroxy-1-methyl[1]**benzopyrano**[2,3-b]**pyrrol-4(1***H***)-one (2g)** was prepared according to the procedure for 2a: yield (method B) 1.12 g (61%); mp >300 °C (MeOH/ CH₂Cl₂); ¹H NMR (DMSO- d_{e}) δ 2.66 (t, J = 9 Hz, 2), 2.86 (s, 3), 3.45 (t, J = 9 Hz, 2), 6.91 (m, 1), 7.00 (m, 1), 7.22 (m, 1); IR 1612, 1558, 1198 cm⁻¹. Anal. Calcd for C₁₂H₁₁NO₃: C, 66.35; H, 5.10; N, 6.45. Found: C, 65.98; H, 4.97; N, 6.38.

1-Methyl-1.2.3.4-tetrahydro-5H-[1]benzopyrano[2,3-b]pyridin-5-one (3a). Method A. A solution of 8a (1.7 g, 7.3 mmol) in 24 mL of PPE/CHCl₃ (124 g/250 mL) under N₂ was heated to reflux for 3.5 h. The volatiles were removed in vacuo, and the residue was added to 150 mL of saturated Na₂CO₃ at 0 °C. The mixture was stirred 20 min at rt and extracted with 4×50 mL of CH₂Cl₂. The combined organics were dried over MgSO₄ and concentrated in vacuo. The crude solid was chromatographed over 50 g of silica gel (4% MeOH/CH₂Cl₂) to afford 1.0 g (64%) of 3a along with 134 mg (8.5%) of 10a. Method B. A solution of 8a (1.20 g, 5.1 mmol) in 15 mL of CH₂Cl₂ was treated with Tf₂O (3.0 mL, 18.4 mmol) (Caution: exotherm) and stirred for 23 h at rt. The mixture was concentrated in vacuo, and the solid was partitioned between 25 mL of saturated NaHCO₃ and 25 mL of CH₂Cl₂. The combined organics were dried over MgSO₄ and concentrated (1.15g). ¹H NMR revealed a 4:1 mixture of product/ starting material. The crude material was chromatographed over 30 g of silica gel (3% MeOH/CH₂Cl₂) to afford 720 mg (66%) of **3a**: mp 137–139 °C; ¹H NMR δ 1.93 (m, 2), 2.70 (d, J = 6.4 Hz, 2), 3.16 (s, 3), 3.38 (d, J = 6.4 Hz, 2), 7.27 (m, 2), 7.47 (m, 1), 8.16(m, 1); ¹³C NMR δ 19.4, 20.6, 35.7, 50.4, 94.9, 116.0, 122.9, 124.3, 125.5, 131.0, 152.9, 173.3; UV 244, 253, 283, 294, 323 nm; IR 1617, 1554 cm⁻¹. Anal. Calcd for C₁₃H₁₃NO₂: C, 72.54; H, 6.09; N, 6.51. Found: C, 72.48; H, 6.09; N, 6.47.

1,9-Dimethyl-8-hydroxy-1,2,3,4-tetrahydro-5*H*-[1]benzopyrano[2,3-*b*]pyridin-5-one (3b). A solution of 8b (2.28 g, 8.7 mmol) in 32 mL of PPE/CHCl₃ (124 g /250 mL) under N₂ was heated to reflux for 3 h. The volatiles were removed *in vacuo*, and the residue was added to 150 mL of 2 N NaOH at 0 °C. The pH was adjusted to 5 with 10% HCl, and the precipitate was collected, washed with H₂O, and dried. The solid was recrystallized from MeOH/CH₂Cl₂ to give 1.22 g (58%) of 3b; mp >300 °C; ¹H NMR (DMSO-d₆) δ 1.82 (m, 2), 2.21 (s, 3), 2.47 (t, J = 6Hz, 2), 3.13 (s, 3), 3.37 (m, 2), 6.85 (m, 1), 7.61 (m, 1), 8.60 (s, 1); UV 249, 282, 293, 321 nm; IR 1627, 1589 cm⁻¹. Anal. Calcd for C₁₄H₁₅NO₃ (0.52% H₂O found): C, 68.20; H, 6.19; N, 5.68. Found: C, 67.96; H, 6.26; N, 5.60.

8-Methoxy-1-methyl-1,2,3,4-tetrahydro-5*H*-[1]benzopyrano[2,3-b]pyridin-5-one (3c) was prepared according to the procedures for 3a: yield (method A) 1.1 g (60%), (method B) 1.63 g (87%); mp 149–150 °C (EtOAc); ¹H NMR δ 1.92 (m, 2), 2.67 (t, J = 6 Hz, 2), 3.14 (s, 3), 3.36 (t, J = 6 Hz, 2), 3.86 (s, 3), 6.70 (m, 1), 6.86 (m, 1), 8.05 (m, 1); ¹³C NMR δ 19.3, 20.7, 35.7, 50.4, 55.6, 94.0, 99.7, 112.3, 116.5, 126.7, 154.2, 159.7, 162.2, 173.4; UV 251, 282, 291, 323 nm; IR 1631, 1612, 1601 cm⁻¹. Anal. Calcd for C₁₄H₁₅NO₃: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.52; H, 6.25; N, 5.70.

8-Chloro-1-methyl-1,2,3,4-tetrahydro-5*H*-[1]benzopyrano-[2,3-*b*]pyridin-5-one (3d) was prepared according to the procedure for 3a: yield (method B) 1.39 g (75%); mp 159-160 °C (EtOAc); ¹H NMR δ 1.93 (m, 2), 2.68 (t, J = 6 Hz, 2), 3.15 (s, 3), 3.39 (t, J = 6 Hz, 2), 7.27 (m, 2), 8.07 (m, 1); ¹³C NMR δ 19.2, 20.4, 35.6, 50.3, 94.8, 116.1, 121.4, 124.8, 126.7, 136.5, 152.8, 159.5, 172.3; UV 251, 286, 296, 329 nm; IR 1602, 1547 cm⁻¹. Anal. Calcd for C₁₃H₁₂ClNO₂: C, 62.53; H, 4.84; N, 5.61. Found: C, 62.35; H, 4.88; N, 5.66.

N-(1-Methyl-1,3,4,5-tetrahydro-5-oxo-2*H*-[1]benzopyrano-[2,3-*b*]pyridin-7-yl)acetamide (3e) was prepared according to the procedure for 3a: yield (method A) 1.2 g (64%); mp >300 °C (MeOH); ¹H NMR (DMSO- d_{θ}) δ 1.62 (m, 2), 1.89 (s, 3), 2.27 (t, *J* = 6 Hz, 2), 2.92 (s, 3), 3.20 (t, *J* = 6 Hz, 2), 7.05 (m, 1), 7.60 (m, 1), 7.76 (m, 1), 10.10 (m, 1); ¹³C NMR (DMSO- d_{θ}) δ 19.1, 20.1, 24.1, 35.3, 49.6, 93.0, 105.3, 115.2, 117.6, 125.0, 141.9, 152.9, 159.2, 168.9, 171.4; UV 261, 286, 297, 331 nm; IR 1690, 1632, 1617 cm⁻¹; HRMS calcd for C₁₆H₁₆N₂O₄: 272.1161, found 272.1160. 9-Methoxy-1-methyl-1,2,3,4-tetrahydro-5*H*-[1]benzopyrano[2,3-b]pyridin-5-one (3f) was prepared according to the procedure for 3a: yield (method B) 1.63 g (56%); mp 165–166 °C (EtOAc); ¹H NMR δ 1.92 (m, 2), 2.69 (t, J = 6 Hz, 2), 3.19 (s, 3), 3.37 (t, J = 6 Hz, 2), 3.93 (s, 3), 7.02 (m, 1), 7.20 (m, 1), 7.73 (m, 1); ¹³C NMR δ 19.3, 20.5, 35.5, 50.1, 56.1, 94.7, 112.5, 116.5, 123.6, 123.9, 142.8, 147.5, 159.3, 173.2; UV 251, 260, 319 nm; IR 1624, 1604 cm⁻¹. Anal. Calcd for C₁₄H₁₆NO₅: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.38; H, 6.05; N, 5.60.

9-Hydroxy-1-methyl-1,2,3,4-tetrahydro-5*H*-[1]benzopyrano[2,3-*b*]pyridin-5-one (3g) was prepared according to the procedure for 3a: yield (method B) 950 mg (51%); mp 299-301 °C (MeOH/CH₂Cl₂); ¹H NMR (DMSO- d_6) δ 1.92 (m, 2), 2.58 (m, 2), 3.23 (s, 3), 3.47 (m, 2), 7.17 (m, 2), 7.40 (m, 1), 10.17 (bs, 1); ¹³C NMR (DMSO- d_6) δ 19.4, 20.3, 35.2, 49.6, 93.6, 114.3, 117.6, 124.0, 124.1, 142.0, 145.5, 159.1, 172.0; UV 253, 318 nm; IR 1612, 1607 cm⁻¹. Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.40; H, 5.78; N, 6.06.

3-(2-Hydroxybenzoyl)-1-(4-methoxybenzyl)-2-piperidone (12). A solution of N-(4-Methoxybenzyl)- δ -valerolactam (12.1 g, 56 mmol) in 50 mL of dry THF at 0 °C under N2 was treated with a solution of LDA (28 mL, 56 mmol) and stirred for 30 min. The mixture was treated with methyl salicylate (2.33 mL, 18 mmol), and the reaction was stirred for 30 min at 0 °C and for 4 h at rt. The mixture was recooled to 0 °C and quenched with 10 mL of H_2O , and the pH was adjusted to 6.5 with 10% HCl. The aqueous layer was extracted with 2×50 mL of CH₂-Cl₂, and the combined organics were dried over MgSO₄ and concentrated in vacuo. The oil was chromatographed over 200 g of silica gel (60% EtOAc/hexanes) to afford 4.81 g (82%) of 12; mp 107 °C; ¹H NMR δ 1.72-2.24 (m, 4), 3.30 (m, 2), 3.80 (s, 3), 4.46 (d, J = 14 Hz, 1), 4.50 (m, 1), 4.70 (d, J = 14 Hz, 1), 6.80-6.94(m, 4), 7.15 (m, 2), 7.47 (m, 1), 7.78 (m, 1), 12.18 (bs, 1); ¹³C NMR $(CDCl_3) \delta 20.8, 25.8, 46.8, 49.8, 50.0, 55.3, 114.0, 118.7, 118.9,$ 119.1, 128.8, 129.5, 131.0, 136.7, 159.0, 163.1, 166.3, 204.4; IR 1630 cm⁻¹. Anal. Calcd for C₂₀H₂₁NO₄: C, 70.78; H, 6.24; N, 4.13. Found: C, 70.52; H, 6.22; N, 4.12.

1-(4-Methoxybenzyl)-1,2,3,4-tetrahydro-5H-[1]benzopyrano[2,3-b]pyridin-5-one (13). A solution of 12 (2.0 g, 5.9 mmol) in 35 mL of PPE/CHCl₃ (124 g/250 mL) under N₂ was heated at reflux for 2 h. The volatiles were removed in vacuo, and the residue was added to 150 mL of 2 N NaOH at 0 °C and stirred for 30 min. The mixture was extracted with 3×50 mL of CH₂-Cl₂, and the combined organics were dried over MgSO₄ and concentrated in vacuo. The oil was chromatographed over 60 g of silica gel (3% MeOH/CH₂Cl₂) to afford 1.02 g (54%) of 13: mp 114–115 °C; ¹H NMR δ 1.88 (m, 2), 2.71 (t, J = 6 Hz, 2), 3.36 (t, J = 6 Hz, 2), 3.80 (s, 3), 4.66 (s, 2), 6.88 (m, 2), 7.20-7.34 (m, 3)4), 7.48 (m, 1), 8.20 (m, 1); ¹³C NMR δ 19.5, 20.7, 47.9, 51.2, 55.3, 95.0, 114.3, 116.0, 123.0, 124.4, 125.6, 128.5, 128.8, 131.2, 152.9, 159.1, 159.2, 173.7; UV 253, 277, 283, 295, 324 nm; IR 1603 cm⁻¹. Anal. Calcd for C₂₀H₁₉NO₃: C, 74.75; H, 5.96; N, 4.36. Found: C, 74.63; H, 6.10; N, 4.32.

1,2,3,4-Tetrahydro-5*H*-[1]benzopyrano[2,3-*b*]pyridin-5one (14). A solution of 13 (450 mg, 1.38 mmol) in 3 mL of trifluoroacetic under N₂ at 0 °C was treated with H₂SO₄ (1.2 mL, 43 mmol) and stirred for 20 min as it warmed to rt. The reaction was poured into 150 mL of saturated NaHCO₃ and extracted with 3×50 mL of CH₂Cl₂. The combined organics were dried over MgSO₄ and concentrated *in vacuo*. The solid was recrystallized from EtOAc/CH₂Cl₂ to afford 243 mg (88%) of 14: mp 235-237 °C (lit.^{4b} mp 232 °C); ¹H NMR (DMSO-d₆) δ 1.92 (m, 2), 2.66 (t, J = 6 Hz, 2), 3.47 (t, J = 6 Hz, 2), 7.45 (m, 2), 7.72 (m, 1), 8.08 (m, 1); ¹³C NMR (DMSO-d₆) δ 18.7, 20.0, 92.1, 116.1, 122.7, 124.0, 124.5, 131.4, 152.6, 160.1, 171.8; UV 243, 283, 295, 315 nm; IR 1634, 1606 cm⁻¹. Anal. Calcd for C₁₂H₁₁NO₂ (0.08% H₂O found): C, 71.57; H, 5.52; N, 6.96. Found: C, 71.14; H, 5.39; N, 6.86.

Supplementary Material Available: Experimental details for 7c-g, 8c-g, 2h, and 3h, ¹H and ¹³C NMR spectra for 7e, 8f, 2e, 3e, and 2h, and COLOC spectra for 9h, 10h, 2h, and 3h (21 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.